Worksheet 1

- 1. Truth Tables
 - a. Fill in the following truth table

P	Q	$P \Longrightarrow Q$	$Q \Longrightarrow P$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$
T	T			
T	F			
F	Т			
F	F			

Fact: $(P \Longrightarrow Q) \land (Q \Longrightarrow P) \equiv P \Longleftrightarrow Q$

- b. Use the above truth table to determine the truth value for each of the following biconditional sentences
 - i. 1 + 1 = 2 if and only if $cos(\pi) = -1$
 - ii. The moon is made of cheese if and only if the earth is flat
- c. Use truth table to prove that $P \Rightarrow Q \equiv (\neg Q) \Rightarrow (\neg P)$

Р	Q	$\neg Q$	$\neg P$	$P \Longrightarrow Q$	$(\neg Q) \Rightarrow (\neg P)$
Т	Т				
T	F				
F	Т				
F	F				

How is $(\neg Q) \Longrightarrow (\neg P)$ related to $P \Longrightarrow Q$? What can you say about it?

d. Construct a truth table for $(P \Longrightarrow Q) \land (Q \Longrightarrow R)$

2. Converse Vs. Inverse Vs. Contrapositive

Write the converse, inverse, and contrapositive of each statement. And determine the truth value of the original statement, its converse, its inverse, and its contrapositive

- a. If f is an even function, then f(2) = f(-2)
 - i. Converse
 - ii. Inverse
 - iii. Contrapositive
- b. If x > 1, then x is positive
 - i. Converse
 - ii. Inverse
 - iii. Contrapositive
- c. If the real number $\sqrt{5}$ is rational, then π is rational
 - i. Converse
 - ii. Inverse
 - iii. Contrapositive

3. Negating Quantified Statements

- Step 1: Decide whether the statement is true or false. If false, give a counterexample.
- Step 2: Convert English sentence (as much as possible) into a formulaic statement.
- Step 3: Negate the statement and write the negation in both forms
 - a. The square of every real number is positive
 - i. True / False:
 - ii. Formulaic Statement:
 - iii. Negation:
 - b. Every p-series is convergent

(Recall from MATH 143: A p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1)

- i. True / False:
- ii. Formulaic Statement:
- iii. Negation:

c.	For every integer n , $4n + 1$ is odd					
	i.	True / False:				
	ii.	Formulaic Statement:				
	iii.	Negation:				
d.	There	exists a natural number n such that $2^n - 1$ is prime				
	i.	True / False:				
	ii.	Formulaic Statement:				
	iii.	Negation:				
e.	For ev	ery positive real number ε , there exists a natural number N such that $\frac{1}{N} < \varepsilon$				
	i.	True / False:				
	ii.	Formulaic Statement:				
	iii.	Negation:				